当前位置: > 已知矩阵B1,B2都与A矩阵可交换,证明B1+B2,B1*B2也都与A可交换...
题目
已知矩阵B1,B2都与A矩阵可交换,证明B1+B2,B1*B2也都与A可交换

提问时间:2021-01-18

答案
因为B1,B2都与A矩阵可交换
所以 AB1 = B1A,AB2=B2A.
所以 A(B1+B2) = AB1+AB2 = B1A+B2A = (B1+B2)A,
A(B1B2) = B1AB2 = B1B2A = (B1B2)A
即A与 B1+B2,B1B2 可交换.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.