题目
在Rt△ABC中,∠C=90°,AC=3,AB=5.点P从C点出发沿CA以每秒1个单位的速度向点A匀速运动,
到达点A后立刻以原来的速度沿AC返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BC-CP于点E.点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止.设点P、Q运动的时间是t秒(t>0).
(1)当t = 2时,AP = ,点Q到AC的距离是 ;
(2)在点P从C向A运动的过程中,求△APQ的面积S与
t的函数关系式;(不必写出t的取值范围)
(3)在点E从B向C运动的过程中,四边形QBED能否成
为直角梯形?若能,求t的值.若不能,请说明理由;
(4)当DE经过点C 时,请直接写出t的值.
到达点A后立刻以原来的速度沿AC返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BC-CP于点E.点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止.设点P、Q运动的时间是t秒(t>0).
(1)当t = 2时,AP = ,点Q到AC的距离是 ;
(2)在点P从C向A运动的过程中,求△APQ的面积S与
t的函数关系式;(不必写出t的取值范围)
(3)在点E从B向C运动的过程中,四边形QBED能否成
为直角梯形?若能,求t的值.若不能,请说明理由;
(4)当DE经过点C 时,请直接写出t的值.
提问时间:2021-01-18
答案
(1)AP=1,点Q到点C的距离是8/5
(2)过点Q作QF⊥AC,∵∠C=90°∴QF‖CB∴△AFQ∽△ACB,∴AQ:AB=FQ:CB,即t:5=FQ:4∴FQ=5/4t,∴S△APQ=1/2AP×FQ=1/2×(3-t)×5/4t=-2/5t²+6/5t.
(3)能.当DE‖AB时,∵DE垂直平分PQ∴∠QDE=90°∴∠DQB=90°又∵∠A=∠A∴△APQ∽△ABC∴AQ:AC=AP:AB即t:3=(3-t):5解得t=9/8.当PQ‖CB时,△APQ∽△ACB∴AP:AC=AQ:AB即(3-t):3=t:5解得t=15/8
(4)t=5/2(这个我不太确定)
(2)过点Q作QF⊥AC,∵∠C=90°∴QF‖CB∴△AFQ∽△ACB,∴AQ:AB=FQ:CB,即t:5=FQ:4∴FQ=5/4t,∴S△APQ=1/2AP×FQ=1/2×(3-t)×5/4t=-2/5t²+6/5t.
(3)能.当DE‖AB时,∵DE垂直平分PQ∴∠QDE=90°∴∠DQB=90°又∵∠A=∠A∴△APQ∽△ABC∴AQ:AC=AP:AB即t:3=(3-t):5解得t=9/8.当PQ‖CB时,△APQ∽△ACB∴AP:AC=AQ:AB即(3-t):3=t:5解得t=15/8
(4)t=5/2(这个我不太确定)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点
- 1我在线上等的,好的我就多加分大,%>_
- 2将R1 、R2、、R3并联接到电路中,已知R3=30Ω,干路电流是通过电阻R1电流的7倍,通过R2的电流是R1中电流的
- 3PHILOSOPHY论文怎么写
- 4地球上最炎热的地方是什么地方
- 5为什么X减一的绝对值的几何意义是指在X到一的距离?
- 6求lim(1+1/n+2)=n->0的极限?(n趋向无穷大)
- 7以《我们的知识是有限的》写20~200句话!
- 8英文怎么翻译“你最近在忙什么?你的自行车是从哪买来的?”
- 9Could you tell us if she ____ us a talk tommorrow?
- 10这只猴子的尾巴比那只猴子的尾巴长.翻译成英语并分为两句