当前位置: > 实数a,b,c满足a+b+c=1,求a^+b^2+c^2的最小值...
题目
实数a,b,c满足a+b+c=1,求a^+b^2+c^2的最小值
用参数法

提问时间:2021-01-18

答案
最小值是1/3,三分之一.取参数m、n,令a=1/3+m,b=1/3+n,c=1/3-(m+n).则满足三者之和是1.a^2+b^2+c^2=(1/9+m^2+2/3*m)+(1/9+n^2+2/3*n)+(1/9+(m+n)^2-2/3*(m+n)) a^2+b^2+c^2=1/9+1/9+1/9+m^2+n^2+(m+n)^2+2/3*m+2/3*n-...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.