当前位置: > 斐波那契数列:把一个8*8的方格切成四块,拼成一个5*13的长方形...
题目
斐波那契数列:把一个8*8的方格切成四块,拼成一个5*13的长方形
我发现一个很奇怪的问题...
在斐波那契数列的解释里面,有这么一段话:
“如果你看到有这样一个题目:某人把一个8*8的方格切成四块,拼成一个5*13的长方形,故作惊讶地问你:为什么64=65?其实就是利用了斐波那契数列的这个性质:5、8、13正是数列中相邻的三项,事实上前后两块的面积确实差1,只不过后面那个图中有一条细长的狭缝,一般人不容易注意到.”
我尝试了一下,怎么样可以让
8*8的方格切成四块,拼成一个5*13的长方形呢?
好奇怪...
那个所谓的细缝又在哪里呢?

提问时间:2021-01-17

答案
其实算一算就知道有问题了.
在图3中,AB的斜率可以在△ABD中求,BC的斜率可以在△BCE中求.
如图建立坐标系,可知各点坐标:A(0,5) B(5,3) C(13,0) 
所以,由斜率公式k=(y2-y1)/(x2-x1)得:
k(AB)=(5-3)/(0-5)=-2/5
k(BC)=(0-3)/(13-5)=-3/8
可知BC与AB的斜率不同,即ABC本来就不在同一条直线上,AB和BC的斜率相差1/40,所以不易察觉.
所以,对角线AC终有一条极小的面积为1的缝隙.你拿方格纸试一试再仔细观察一下应该就可以发觉到的了.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.