当前位置: > 已知△ABC的三个内角分别为A,B,C,向量m=(sinB,1−cosB)与向量n=(2,0)夹角的余弦角为1/2. (1)求角B的大小; (2)求sinA+sinC的取值范围....
题目
已知△ABC的三个内角分别为A,B,C,向量
m
=(sinB,1−cosB)
与向量
n
=(2,0)
夹角的余弦角为
1
2

(1)求角B的大小;
(2)求sinA+sinC的取值范围.

提问时间:2021-01-17

答案
(Ⅰ)∵m=(sinB,1-cosB),n=(2,0),∴cos<m,n>=m•n|m|•|n|=12.(2分)即2sinB22−2cosB=12.∴2cos2B-cosB-1=0.解得cosB=−12或cosB=1(舍)∵0<B<π∴B=2π3.(6分)(Ⅱ)由(Ⅰ)可知A+C=π...
本题考查的知识点是数量积表示两个向量的夹角,及三角函数的最值,
(1)由向量
m
=(sinB,1−cosB)
与向量
n
=(2,0)
夹角的余弦角为
1
2
.我们可以构造一个关于角B的三角方程,解方程后,根据B为△ABC的内角,易得到角B的大小.
(2)根据(1)的结论,我们可以将sinA+sinC中C角消掉,得到一个关于A角的正弦型函数,再由0<A<
π
3
结合正弦型函数的性质,易得sinA+sinC的取值范围.

数量积表示两个向量的夹角;三角函数的最值.

cosθ=

a
b
|
a
|•|
b
|
这是由向量的数量积表示夹角一唯一公式,也是利用向量求角的唯一公式,希望大家牢固掌握,熟练应用.

举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.