当前位置: > 求∫e^(x^1/3) dx 用分部积分法做...
题目
求∫e^(x^1/3) dx 用分部积分法做
如题

提问时间:2021-01-17

答案
设t=x^(1/3),x=t^3,
dx=3t^2dt,
原式=∫e^t*3t^2dt
=3(t^2e^t-2∫t*e^tdt)
=3[t^2*e^t-2(te^t-∫e^tdt)]
=3t^2*e^t-6te^t+6e^t+C
=3x^(2/3)e^[x^(1/3)]-6x^(1/3)e^[x^(1/3)]+6e^[x^(1/3)]+C.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.