当前位置: > 如图,在△ABC中,∠ACB=90°,D是AB的中点,以DC为直径的⊙O交△ABC的边于G,F,E点. 求证:(1)F是BC的中点; (2)∠A=∠GEF....
题目
如图,在△ABC中,∠ACB=90°,D是AB的中点,以DC为直径的⊙O交△ABC的边于G,F,E点.
求证:(1)F是BC的中点;
(2)∠A=∠GEF.

提问时间:2021-01-17

答案
证明一:
(1)连接DF,∵∠ACB=90°,D是AB的中点,
∴BD=DC=
1
2
AB,(2分)
∵DC是⊙O的直径,
∴DF⊥BC,(4分)
∴BF=FC,即F是BC的中点;(5分)
(2)∵D,F分别是AB,BC的中点,
∴DF∥AC,(6分)
∴∠A=∠BDF,(7分)
∵∠BDF=∠GEF(圆周角定理),(8分)
∴∠A=∠GEF.(9分)
证明二:
(1)连接DF,DE,
∵DC是⊙O直径,
∴∠DEC=∠DFC=90°.(1分)
∵∠ECF=90°,
∴四边形DECF是矩形.
∴EF=CD,DF=EC.(2分)
∵D是AB的中点,∠ACB=90°,
∴EF=CD=BD=
1
2
AB.(3分)
∴△DBF≌△EFC.(4分)
∴BF=FC,即F是BC的中点.(5分)
(2)∵△DBF≌△EFC,
∴∠BDF=∠FEC,∠B=∠EFC.(6分)
∵∠ACB=90°(也可证AB∥EF,得∠A=∠FEC),
∴∠A=∠FEC.(7分)
∵∠FEG=∠BDF(同弧所对的圆周角相等 ),(8分)
∴∠A=∠GEF.(9分)
(此题证法较多,大纲卷参考答案中,又给出了两种不同的证法,可供参考.)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.