当前位置: > 已知向量a=(1-t,1-t,1) b=(2,t,t)则|b-a|最小值是多少啊...
题目
已知向量a=(1-t,1-t,1) b=(2,t,t)则|b-a|最小值是多少啊

提问时间:2021-01-16

答案
|b-a|=√[(t-1)^2+(2t-1)^2+(t-1)^2]
=√(6t^2-8t+4)
=√[2*(3t^2-4t+2)]
=√[6*(t-2/3)^2+4/3]
∴当t=2/3时,|b-a|取得最小值是√(4/3)=2(√3)/3(即3分之2根号3)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.