当前位置: > 已知函数f(x)=sin(2wx-π/6)+1/2的最小周期为π,求w的值,求函数f(x)在区间[0,2π/3]上的取值范围...
题目
已知函数f(x)=sin(2wx-π/6)+1/2的最小周期为π,求w的值,求函数f(x)在区间[0,2π/3]上的取值范围

提问时间:2021-01-16

答案
由题意得:
π=2π/(2w)
解得:w=1
f(x)=sin(2x-π/2)+1/2
x∈[0,2π/2]
∴-π/6
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.