当前位置: > (5-2a)^2+4b^2+(a-b)^2求最小值,其中a>0,b>0...
题目
(5-2a)^2+4b^2+(a-b)^2求最小值,其中a>0,b>0

提问时间:2021-01-16

答案
a=25/12 ,b=5/12时,取最小值,最小值=25/6
方法:
设f(a,b)= (5-2a)^2+4b^2+(a-b)^2
=5a²-2ab+5b²-20a+20
分别对f求a,b的偏导数,得两个方程
10a-2b-20=0
10b-2a=0
解得a=25/12 ,b=5/12
再用二元函数的极值的充分条件可判断该点为极小值,
又该点为唯一的极值点,所以为最小值!=25/6
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.