题目
已知,ln y=(sin x)*e^y .求dy/dx...
提问时间:2021-01-16
答案
已知,ln y=(sin x)*e^y .求dy/dx
解一:利用隐函数求导公式求解【建议你用这个】
设F(x,y)=lny-(sinx)e^y=0
则dy/dx=-(∂F/∂x)/(∂F/∂y)=[(cosx)e^y]/[(1/y)-(sinx)e^y]=[y(cosx)e^y]/[1-y(sinx)e^y]
解二:直接求导,注意要把y看作中间变量:【此法的麻烦之处是求导后还要把y'解出来】
y'/y=(cosx)e^y+(sinx)(e^y)y'
故有y'=y(cosx)e^y+y(sinx)(e^y)y'
移项得 [1-y(sinx)e^y]y'=y(cosx)e^y
故y'=[y(cosx)e^y]/[1-y(sinx)e^y].
解一:利用隐函数求导公式求解【建议你用这个】
设F(x,y)=lny-(sinx)e^y=0
则dy/dx=-(∂F/∂x)/(∂F/∂y)=[(cosx)e^y]/[(1/y)-(sinx)e^y]=[y(cosx)e^y]/[1-y(sinx)e^y]
解二:直接求导,注意要把y看作中间变量:【此法的麻烦之处是求导后还要把y'解出来】
y'/y=(cosx)e^y+(sinx)(e^y)y'
故有y'=y(cosx)e^y+y(sinx)(e^y)y'
移项得 [1-y(sinx)e^y]y'=y(cosx)e^y
故y'=[y(cosx)e^y]/[1-y(sinx)e^y].
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点