当前位置: > 求y=sin2x+2倍根号2cos(π/4+x)+3的最小值...
题目
求y=sin2x+2倍根号2cos(π/4+x)+3的最小值

提问时间:2021-01-16

答案

y=sin2x+2√2cos(π/4+x)+3
=cos(2x-π/2)+2√2cos(π/4+x)+3
=1-2sin²(x-π/4)-2√2sin(x-π/4)+3
=4-2[sin²(x-π/4)+√2sin(x-π/4)]
令sin(x-π/4)=t,则-1≤t≤1于是
y=4-2(t²+√2t)
y=4-2(t²+√2t+1/2)+2*1/2
=4-2(t-√2/2)²+1
=5-2(t-√2/2)² (-1≤t≤1)
当t=-1时,函数取得最小值
4-2[(-1)²+√2*(-1)]
=4-2(1-√2)
=2-2√2
所以最小值为2-2√2
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.