题目
已知a,b,c都是正数,证明:a2+b2+c2+(1/a+1/b+1/c)2大于等于6倍根3,并确定a,b,c为何值时,等号成立.
同上
同上
提问时间:2021-01-15
答案
证明:
(证法一)
因为a,b,c均为正数,由平均值不等式得 {a2+b2+c2≥3(abc)231a+1b+1c≥3(abc)-13①
所以 (1a+1b+1c)2≥9(abc)-23②(
故 a2+b2+c2+(1a+1b+1c)2≥3(abc)23+9(abc)-23.
又 3(abc)23+9(abc)-23≥227=63③
所以原不等式成立
当且仅当a=b=c时,①式和②式等号成立.当且仅当 3(abc)23=9(abc)-23时,③式等号成立.
即当且仅当a=b=c= 314时,原式等号成立.
(证法二)
因为a,b,c均为正数,由基本不等式得 {a2+b2≥2abb2+c2≥2bcc2+a2≥2ac
所以a2+b2+c2≥ab+bc+ac①
同理 1a2+1b2+1c2≥1ab+1bc+1ac②
故 a2+b2+c2+(1a+1b+1c)2③
≥ab+bc+ac+31ab+31bc+31ac
≥63所以原不等式成立.
当且仅当a=b=c时,①式和②式等号成立,当且仅当a=b=c,(ab)2=(bc)2=(ac)2=3时,③式等号成立.
即当且仅当a=b=c= 314时,原式等号成立
(证法一)
因为a,b,c均为正数,由平均值不等式得 {a2+b2+c2≥3(abc)231a+1b+1c≥3(abc)-13①
所以 (1a+1b+1c)2≥9(abc)-23②(
故 a2+b2+c2+(1a+1b+1c)2≥3(abc)23+9(abc)-23.
又 3(abc)23+9(abc)-23≥227=63③
所以原不等式成立
当且仅当a=b=c时,①式和②式等号成立.当且仅当 3(abc)23=9(abc)-23时,③式等号成立.
即当且仅当a=b=c= 314时,原式等号成立.
(证法二)
因为a,b,c均为正数,由基本不等式得 {a2+b2≥2abb2+c2≥2bcc2+a2≥2ac
所以a2+b2+c2≥ab+bc+ac①
同理 1a2+1b2+1c2≥1ab+1bc+1ac②
故 a2+b2+c2+(1a+1b+1c)2③
≥ab+bc+ac+31ab+31bc+31ac
≥63所以原不等式成立.
当且仅当a=b=c时,①式和②式等号成立,当且仅当a=b=c,(ab)2=(bc)2=(ac)2=3时,③式等号成立.
即当且仅当a=b=c= 314时,原式等号成立
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
- 1长方体中,长方形ABCD的面积为10cm²,长方形BCGF的面积为6cm²,与面积ABCD垂直的棱长和为12㎝,
- 2tanx/2=sinx/1+cosx求证
- 3急需一篇少儿赞美祖国的文章大约1000字
- 4已知M〔3.-1〕N〔3.5〕这线段MN的垂直平分线的方程是什么
- 5亮亮买钢笔用去总钱数的3分之1,买连环画用去4元,这时用去的钱数与剩下的钱数的比为5:4,你知道亮亮原来有多少钱吗?加单明了的回答
- 6已知函数y=f(x)同时满足以下五个条件:(1)f(x+1)的定义域是[-3,1];(2)f(x)是奇函数;(3)在[-2,0)上,
- 7在一次爆破中,用一根长1m的导火线引爆炸药,导火线以0.5cm/s的速度燃烧,点火者点着导火线后以4m/s的速度跑开,他能否在爆炸前跑到离爆炸地点600m的安全地区?(通过列式计算来说明)
- 8已知关于x的方程ax-4=2x的解是2分之1,求(3a的平方+6a-73)的2010次方的值
- 9已知(x-根号3)^2+Iy-cos30`I=0,求3xy-x^2y^2/xy-1*[1/xy-1 ]的值?
- 10找一些一个字一个意思的四字词语或成语.(例如:琴棋书画)
热门考点