题目
若公比为c的等比数列{an}的首项a1=1且满足an=(an-1+an-2)/2,求1 c的值 2 数列{nan}的前n项和sn
若公比为c的等比数列{an}的首项a1=1且满足an=(an-1+an-2)/2,
求1 c的值
2 数列{nan}的前n项和sn
若公比为c的等比数列{an}的首项a1=1且满足an=(an-1+an-2)/2,
求1 c的值
2 数列{nan}的前n项和sn
提问时间:2021-01-15
答案
(1)
an=c^(n-1),则a(n-1)=c^(n-2),a(n-2)=c^(n-3)
c^(n-1)=[c^(n-2)+c^(n-3)]/2,
因为c^(n-3)不等于0,所以化简为c^2=(c+1)/2,解得c=-1/2或1
(2)
设bn=n*an
当c=1时:
bn=n,则Sn=1+2+3+...+n=n(n+1)/2
当c=-1/2时:
bn=n*(-1/2)^(n-1)
Sn =1+2*(-1/2)+3*(-1/2)^2+4*(-1/2)^3+...+n*(-1/2)^(n-1)----(1)
(-1/2)Sn= 1*(-1/2)+2*(-1/2)^2+4*(-1/2)^3+...+(n-1)*(-1/2)^(n-1)+n*(-1/2)^n-----(2)
(1)-(2),得
(3/2)Sn=1+(-1/2)+(-1/2)^2+(-1/2)^3+...+(-1/2)^(n-1)-n*(-1/2)^n
=[1-(-1/2)^n]/[1-(-1/2)]-n*(-1/2)^n=2/3-[n+(2/3)]/(-2)^n
即Sn=4/9-[2n/3+(4/9)]/(-2)^n
bn=n*(-1/2)^(n-1)为等比和等差数列相乘的形式,就用"差项法",(Sn-q*Sn)得到一个等比数列和余项,便可以解出答案
an=c^(n-1),则a(n-1)=c^(n-2),a(n-2)=c^(n-3)
c^(n-1)=[c^(n-2)+c^(n-3)]/2,
因为c^(n-3)不等于0,所以化简为c^2=(c+1)/2,解得c=-1/2或1
(2)
设bn=n*an
当c=1时:
bn=n,则Sn=1+2+3+...+n=n(n+1)/2
当c=-1/2时:
bn=n*(-1/2)^(n-1)
Sn =1+2*(-1/2)+3*(-1/2)^2+4*(-1/2)^3+...+n*(-1/2)^(n-1)----(1)
(-1/2)Sn= 1*(-1/2)+2*(-1/2)^2+4*(-1/2)^3+...+(n-1)*(-1/2)^(n-1)+n*(-1/2)^n-----(2)
(1)-(2),得
(3/2)Sn=1+(-1/2)+(-1/2)^2+(-1/2)^3+...+(-1/2)^(n-1)-n*(-1/2)^n
=[1-(-1/2)^n]/[1-(-1/2)]-n*(-1/2)^n=2/3-[n+(2/3)]/(-2)^n
即Sn=4/9-[2n/3+(4/9)]/(-2)^n
bn=n*(-1/2)^(n-1)为等比和等差数列相乘的形式,就用"差项法",(Sn-q*Sn)得到一个等比数列和余项,便可以解出答案
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1从市中心到郊区,你选择住在哪里,说明理由.
- 2每个成熟的T淋巴细胞只带有对应于一种抗原的受体
- 3现在进行时的时间状语有什么?
- 4一个圆锥的地底面半径为3cm,母线长6cm,则圆锥的侧面积是多少?(结果保留π)
- 5古文:《宋濂苦学》的第一段的练习,
- 6方块减圆圈等于45,方块减三角等于27,三角减圆圈等于多少?
- 7【改错】Please(show)your(pictures)(for)(me).
- 8某金属M在化学反应中表现+2价.取等质量的该金属两块,分别加入硫酸铜溶液和硝酸汞溶液中,一段时间后,从溶液中取出称量,发现前者质量减少了3.6%,后者质量增加了6.6%.又经分析之后,
- 9水果店运进一批水果,其中苹果占50%,梨占40%,梨比苹果少( )%?
- 10CaCl2和NaHCO3不反应的原因
热门考点