题目
在△ABC中,AB=AC,∠BAC=90°,点P为BC边上一动点,AP=AQ,∠PAQ=90°,连接CQ
三角形ACQ能否成为直角三角形,请直接写出此时P的位置,如果不能、请说明理由
当点P在BC上什么位置时,△ACQ是等腰三角形.
这一题我很疑惑、没有悬赏分了,
没有图片、做过的帮帮忙、谢谢。
三角形ACQ能否成为直角三角形,请直接写出此时P的位置,如果不能、请说明理由
当点P在BC上什么位置时,△ACQ是等腰三角形.
这一题我很疑惑、没有悬赏分了,
没有图片、做过的帮帮忙、谢谢。
提问时间:2021-01-15
答案
证明:∵∠BAC=∠PAQ=90°,AB=AC
∴∠BAC-∠CAP=∠PAQ-∠CAP=45°
∴∠BAP=∠CAQ
在△AQC与△APB中
AQ=AP
∠BAP=∠CAQ
AC=AB
∴ △AQC≌△APB
∴∠B=∠QAC=45°
∵∠B+∠ACB=90°
∴∠QCA+∠ACB=90°
∴CQ⊥BC
当P在BC的中点时AP⊥BC,已知四边形PAQC为正方形,△ACQ是等腰三角形.
∴∠BAC-∠CAP=∠PAQ-∠CAP=45°
∴∠BAP=∠CAQ
在△AQC与△APB中
AQ=AP
∠BAP=∠CAQ
AC=AB
∴ △AQC≌△APB
∴∠B=∠QAC=45°
∵∠B+∠ACB=90°
∴∠QCA+∠ACB=90°
∴CQ⊥BC
当P在BC的中点时AP⊥BC,已知四边形PAQC为正方形,△ACQ是等腰三角形.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点
- 1121分解素因数
- 2赏析苏轼的《舟中夜起》
- 3一个水泵在10min内消耗电能1.2×10的5次方J,把1t的水抽到10m高的水塔中,求水泵的机械效率
- 4互余的两个角是什么类型的角
- 5(1)y=1-1/2sinx (2)y=-sinx 求最小值最大值
- 6do you think(that)it is important to .do you find it important.
- 7在△ABC中,求证:a^sin2B+b^sin2A=2absinC
- 8甲乙两数的平均数是32,数的五分之三等于乙数,求甲数.
- 9师要将0.6升的可乐分装到一些纸杯里,每个纸杯最多可盛0.18升,老师需要准备几个这样纸杯?
- 10英语翻译