当前位置: > 已知A(3,1)和焦点为F的抛物线y^2=4x,在抛物线上找一点P,使得PA(绝对值)+PF(绝对值)取得最小值,...
题目
已知A(3,1)和焦点为F的抛物线y^2=4x,在抛物线上找一点P,使得PA(绝对值)+PF(绝对值)取得最小值,
则P点的坐标是?
(1/4,1)

提问时间:2021-01-15

答案
先画图
设P在抛物线准线x=-1上的投影为Q
故|PF|=|PQ| (抛物线定义)
为使|PF|+|PA|值最小
只需使|PQ|+|PA|值最小
易知当Q P A三点共线时值最小
故此时y=1
代入y^2=4x
得x=1/4
即P点坐标为(1/4,1)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.