当前位置: > 求方程(cosx)^2-(sinx)^2=1/2在区间[-2π,2π]上所有解的和...
题目
求方程(cosx)^2-(sinx)^2=1/2在区间[-2π,2π]上所有解的和

提问时间:2021-01-15

答案
(cosx)^2-(sinx)^2=1/2
cos2x=1/2
因为x∈[-2π,2π]
则2x∈[-4π,4π]
因为y=cos2x是偶函数
所有y=cos2x=1/2的点关于y轴对称分布
而给定的区间[-2π,2π]也是关于y轴对称
所以所有解的和为0.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.