当前位置: > 已知a、b、c均为整数,且满足a2+b2+c2+3<ab+3b+2c,则以a+b,c-b为根的一元二次方程是( )...
题目
已知a、b、c均为整数,且满足a2+b2+c2+3<ab+3b+2c,则以a+b,c-b为根的一元二次方程是( )
(A)x2-3x+2=0 (B)x2+2x-8=0 (C)x2-4x-5=0 (D)x2-2x-3=0

a、b、c均为整数,且a2+b2+c2<ab+3b+2c得
a2+b2+c2+3≤ab+3b+2c-1
………………
………………
下面的我就不写了,因为我就是开头不理解,那个减1是怎么来的?
最好详细点,要我听得懂.

提问时间:2021-01-14

答案
因为a2+b2+c2<ab+3b+2c,且a、b、c均为整数,所以ab+3b+2c比a2+b2+c2至少大1,所以才有a2+b2+c2+3≤ab+3b+2c-1,变成了≤号.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.