题目
在△ABC中,a,b,c分别是角A,B,C的对边,已知向量m=(a,b),向量n=(cosA,cosB),向量p=(2√ 2sin(B+C)/2,2sinA),若向量m∥向量n,向量p^2=9,求证△ABC为等边三角形
提问时间:2021-01-14
答案
OB=(2,0) 说明B点坐标为(2,0)
OC=(2,2)说明C点坐标为(2,2)
CA=(根号2·cos α,根号2·sin α),说明A点在以C点为圆心,根号2为半径的圆上,设该圆为圆C
求OA与OB的夹角,就是OA与X轴正向的夹角
令根号的写法为sqrt()
做直线OD与靠近B点这侧的圆C相切,切点为D,连接CD,则OC=2sqrt(2) CD=sqrt(2) 则sin角COD=1/2,则角COD=30度
同理做直线OE与远离B点这侧的圆C相切,切点为E,连接CE,则OC=2sqrt(2) CE=sqrt(2) 则sin角COE=1/2,则角COE=30度.
而角COB为45度,则脚DOB=15度
则所求的范围为{15度,75度]
OC=(2,2)说明C点坐标为(2,2)
CA=(根号2·cos α,根号2·sin α),说明A点在以C点为圆心,根号2为半径的圆上,设该圆为圆C
求OA与OB的夹角,就是OA与X轴正向的夹角
令根号的写法为sqrt()
做直线OD与靠近B点这侧的圆C相切,切点为D,连接CD,则OC=2sqrt(2) CD=sqrt(2) 则sin角COD=1/2,则角COD=30度
同理做直线OE与远离B点这侧的圆C相切,切点为E,连接CE,则OC=2sqrt(2) CE=sqrt(2) 则sin角COE=1/2,则角COE=30度.
而角COB为45度,则脚DOB=15度
则所求的范围为{15度,75度]
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
- 1请将下列第三人称单数,过去式,过去分词,现在分词正确写出 Listen talk look work try drop run
- 2有两支温度计,它们下端玻璃泡的容积相同,但玻璃管粗细不同,当他们插入同一杯热水中时
- 3下列有关存储器读写速度的排列,正确的是()
- 4So was mine.love to be the one you always think of
- 5洋葱鳞片叶表皮细胞临时装片的制作方法步骤
- 6详细的一到六年级名人名言是哪些
- 7There will be a wonderful football match this evening(否定句)
- 8tree和farm的意思一样吗
- 9解三元一次方程组!请写具体的过程!
- 10由10块相同的长方形地砖拼成面积为1.6m2的矩形ABCD(如图),则矩形ABCD的周长为多少?
热门考点