题目
已知函数f(x)=x2-aInx在区间(1,2]上是增函数,g(x)=x-a√x在区间(0,1)上为减函数.
(1)试求函数f(x),g(x)的解析式;(2)求证:当x>0时,方程f(x)=g(x)+2有唯一解.
(1)试求函数f(x),g(x)的解析式;(2)求证:当x>0时,方程f(x)=g(x)+2有唯一解.
提问时间:2021-01-14
答案
f(x)=x^2-aInx在区间(1,2]上是增函数
则可知
f'(x)=2x-a/x=0时,x=√(a/2),-√(a/2)
显然,x>√(a/2),或者x<-√(a/2)时,函数单增
则可知√(a/2)<=1,则0g(x)=x-a√x在区间(0,1)上为减函数
则可知
g'(x)=1-a/2√x=0时,x=(a/2)^2,
显然,x<=(a/2),时,函数单减
则可知根号(a/2)^2>=1,则a>=2
综合考虑得a=2
所以函数f(x),g(x)的解析式
f(x)=x^2-2lnx
g(x)=x-2√x
令F(x)=f(x)-g(x)-2
则显然F(1)=0,而
F'(x)
=f'(x)-g'(x)
=2x-2/x-1+1/√x
=(2x^2-x+√x-2)/x
则可知
f'(x)=2x-a/x=0时,x=√(a/2),-√(a/2)
显然,x>√(a/2),或者x<-√(a/2)时,函数单增
则可知√(a/2)<=1,则0g(x)=x-a√x在区间(0,1)上为减函数
则可知
g'(x)=1-a/2√x=0时,x=(a/2)^2,
显然,x<=(a/2),时,函数单减
则可知根号(a/2)^2>=1,则a>=2
综合考虑得a=2
所以函数f(x),g(x)的解析式
f(x)=x^2-2lnx
g(x)=x-2√x
令F(x)=f(x)-g(x)-2
则显然F(1)=0,而
F'(x)
=f'(x)-g'(x)
=2x-2/x-1+1/√x
=(2x^2-x+√x-2)/x
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1一个长方体和圆柱体容器,长方体和圆柱底面积的比是3:2(从里面量),长方体容器中有1260升,水深6分米
- 2Tom told me he did well in the final exam 改为同义句 Tom () me () he did well in the final exam
- 3硕果累累的秋天作文
- 41+1+1-1-1=111移动火柴棒二根使等式成立怎么做
- 5单位pc是什么意思
- 6锅炉上的压力表读值为1mpa ,当地大气压为760mmHg,怎么求绝对压强
- 7假如你是李华,校报英语角将举行英语征文比赛,现在请你以My favorite jeans为题,为校报写一篇英语短文.
- 8一个圆柱形油桶的容积是80升,从里面量的高是8分米,如果这个油桶装了65升油,油面高多少分米
- 9如图所示,斜面为长方形的斜面体倾角为37°,其长为0.8m,宽为0.6m.一重为20N的木块原先在斜面体上部,当对它施加平行于AB边的恒力F时,刚好使木块沿对角线AC匀速下滑,求木块与斜面间
- 10英语翻译
热门考点