当前位置: > 求抛物线y=x²和直线y=x-1间最短距离....
题目
求抛物线y=x²和直线y=x-1间最短距离.

提问时间:2021-01-14

答案
本题解法有很多种.可以用直线簇y=x+c来截抛物线y=x²,得x²-x-c=0,当恰好相切时判别式△=1+4c=0,解出c=-1/4,代入解得x=1/2,也即切点为(1/2,1/4).根据点到直线距离求出最短距离
dmin=|1/2-1/4-1|/√2=3√2/8
或者直接设抛物线上动点P(t,t^2),根据点到直线距离公式
d=|t-t^2-1|/√2
因|t-t^2-1|=|-(t-1/2)^2-3/4|=|(t-1/2)^2+3/4|≥3/4
故d=|t-t^2-1|/√2≥(3/4)/(√2)=3√2/8
当然还可以用求导y'=2x=1解得x=1/2,y=1/4,该点据直线y=x-1距离最小.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.