当前位置: > 如图,已知:△ABC为等腰直角三角形,∠ACB=90°,延长BA至E,延长AB至F,∠ECF=135°,求证:△EAC∽△CBF....
题目
如图,已知:△ABC为等腰直角三角形,∠ACB=90°,延长BA至E,延长AB至F,∠ECF=135°,求证:△EAC∽△CBF.

提问时间:2021-01-13

答案
证明:∵△ABC为等腰直角三角形,∠ACB=90°,
∴∠CAB=∠CBA=45°,
∴∠E+∠ECA=45°(三角形外角定理).
又∠ECF=135°,
∴∠ECA+∠BCF=∠ECF-∠ACB=45°,
∴∠E=∠BCF;
同理,∠ECA=∠F,
∴△EAC∽△CBF.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.