题目
lim(x->0)(1-e^1/x)/(1+e^1/x)不存在,此题如何解释左右极限不等?
证明lim(x->0)(1-e^1/x)/(1+e^1/x)不存在
证:原式=lim(x->0){[2-1-e^(1/x)]/[1+e^(1/x)]}
=lim(x->0){2/[1+e^(1/x)]-1}
∵右极限=lim(x->0+){2/[1+e^(1/x)]-1}=-1
左极限=lim(x->0-){2/[1+e^(1/x)]-1}=1
∴右极限≠左极限
故lim(x->0)(1-e^1/x)/(1+e^1/x)=不存在.
----------------------------------------------------
“右极限=lim(x->0+){2/[1+e^(1/x)]-1}=-1
左极限=lim(x->0-){2/[1+e^(1/x)]-1}=1”
上边这两个式子为什么是这个结果,在0+和0-有什么区别?
“2/[1+e^(1/x)]”这部分->0啊,为什么一个得-1一个得1?
是说
右极限:2/[1+e^(1/x)]极限->0+,所以取正的,最后得-1
左极限:2/[1+e^(1/x)]极限->0-,所以取负的,负负为正,最后得-1
证明lim(x->0)(1-e^1/x)/(1+e^1/x)不存在
证:原式=lim(x->0){[2-1-e^(1/x)]/[1+e^(1/x)]}
=lim(x->0){2/[1+e^(1/x)]-1}
∵右极限=lim(x->0+){2/[1+e^(1/x)]-1}=-1
左极限=lim(x->0-){2/[1+e^(1/x)]-1}=1
∴右极限≠左极限
故lim(x->0)(1-e^1/x)/(1+e^1/x)=不存在.
----------------------------------------------------
“右极限=lim(x->0+){2/[1+e^(1/x)]-1}=-1
左极限=lim(x->0-){2/[1+e^(1/x)]-1}=1”
上边这两个式子为什么是这个结果,在0+和0-有什么区别?
“2/[1+e^(1/x)]”这部分->0啊,为什么一个得-1一个得1?
是说
右极限:2/[1+e^(1/x)]极限->0+,所以取正的,最后得-1
左极限:2/[1+e^(1/x)]极限->0-,所以取负的,负负为正,最后得-1
提问时间:2021-01-13
答案
这是由于x->0+和0-时1/x的极限不同,分别是+无穷和-无穷,所以最终的极限也不同
是说,x->0+,1/x->+∞,e^(1/x)->+∞,2/[1+e^(1/x)]->0,2/[1+e^(1/x)]-1->-1
而x->0-,1/x->-∞,e^(1/x)->0,2/[1+e^(1/x)]->2,2/[1+e^(1/x)]-1->1
是说,x->0+,1/x->+∞,e^(1/x)->+∞,2/[1+e^(1/x)]->0,2/[1+e^(1/x)]-1->-1
而x->0-,1/x->-∞,e^(1/x)->0,2/[1+e^(1/x)]->2,2/[1+e^(1/x)]-1->1
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点
- 1求金属的热膨胀系数表 另外问下这个系数的单位,还有谁知道34CrNI3MoV的热涨系数
- 2关于ch3coona和naf混合溶液的
- 3若一个三棱锥中,有一条棱长为a,其余棱长均为1,则其体积F(a)取得最大值时a的值为()
- 4小强,小军,小海三人去春游,小强负责买水果,小军负责买面包,小海负责买矿泉水.结果小强花的钱为小军的
- 5根据意思写成语::1.比喻处理事情或说话坚决果断,毫不犹豫
- 620mA LED灯 3V 并联多少可持续亮1个小时
- 7舍生取义 的例子
- 8某市出租车收费方法是三千米以内(包括三千米)收费5元,三千米以外,每超过一千米加收1.2元.
- 9什么水平的作文能入围新概念作文大赛初赛
- 10一物体从静止开始做匀加速直线运动,加速度的大小为a,经过一段时间当速度为v时,将加速度反向、大小改变.为使这物体再经过与加速过程所用时间的N倍时间恰能回到原出发点,则反向