当前位置: > 设1/a+b,1/b+c,1/c+a成等差数列,求证a^2,b^2,c^2也成等差数列...
题目
设1/a+b,1/b+c,1/c+a成等差数列,求证a^2,b^2,c^2也成等差数列

提问时间:2021-01-13

答案
1/a+b,1/b+c,1/c+a成等差数列
所以2/(b+c)=1/(a+b)+1/(c+a)
2(a+b)(c+a)=(b+c)(c+a)+(b+c)(a+b)
化简得2a^2=b^2+c^2
故b^2,a^2,c^2为等差数列
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.