当前位置: > 已知函数f(x)=(1/2011)^x-log2011^x,正实数a,b,c是公差为负数的等差数列...
题目
已知函数f(x)=(1/2011)^x-log2011^x,正实数a,b,c是公差为负数的等差数列
且满足f(a)f(b)f(c)<0,若实数d是方程f (x)=0的一个解,那么下列四个判断:①d<a;②d>b;③d<c;④d>c.其中有可能成立的个数为
A、1 B、2 C、3 D、4

提问时间:2021-01-12

答案
y1=(1/2011)^x递减
y2=log2011^x递增
所以由图象他们只有1个交点
正实数a,b,c是公差为负数的等差数列
所以a>b>c
又f(a)f(b)f(c)<0
所以有两种可能
1.f(a),f(b),f(c)都<0
则a,b,c都>d ,①;③可能成立
2.f(a),f(b),f(c)中一个<0,只能f(a)d,而b,c
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.