当前位置: > 解析几何体:圆(x-4)^2+(y-4)^2=4与直线y=mx的交点为P、Q原点为O...
题目
解析几何体:圆(x-4)^2+(y-4)^2=4与直线y=mx的交点为P、Q原点为O
圆(x-4)^2+(y-4)^2=4与直线y=mx的交点为P、Q原点为O,则|OP|·|OQ|=?

提问时间:2021-01-12

答案
由切线定理有:
直线y=mx于圆的切点是M.
所以|OP|·|OQ|=|OM|^2
圆心坐标是O‘(4,4),半径是2,
O O’=4根号2,
OM^2=Oo'^2-r^2=32-4=28
得出的结果是28
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.