当前位置: > 高中等差数列前n项和问题、谢...
题目
高中等差数列前n项和问题、谢
求数列4、20、64、……(3n-1)*2的n次方的前n项和

提问时间:2021-01-12

答案
楼上的明显算错了,代入A1 A2就知道了
An=(3n-1)*2^n
Sn=A1+A2+A3+.(3n-1)*2^n
S(n+1)=A1+A2+A3+.(3n-1)*2^n+(3n+2)*2^(n+1)
用错位相减法S(n+1)-Sn
得到:A1+(A2-A1)+(A3-A2)+(A4-A3).[(3n+2)*2^(n+1)-(3n-1)*2^n]
新数列:A(n+1)-An=(3n+5)*2^n=(3n-1)*2^n+6*2^n=An+6*2^n
所以:S(n+1)-Sn=A1+Sn+S(6*2^n)=A1+Sn+6[2^(n+1)-2]=4+Sn+6*2^(n+1)-12
S(n+1)-Sn=A(n+1)=(3n+2)*2^(n+1)
由上面两式可得Sn=(3n-4)*2^(n+1)+8
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.