当前位置: > 三边长均为正整数,且最大边长为11的三角形的个数为...
题目
三边长均为正整数,且最大边长为11的三角形的个数为
为什么另外两边不能相等?
设较小的两边长为x、y且x≤y,
则x≤y≤11,x+y>11,x、y∈N*.
我想知道,为什么必须x≤y,直接x≤11,y≤11不就行了?
我之前就是这样列的,当然结果错了,我算的事45个,正确答案是36个

提问时间:2021-01-12

答案
正解应该是
(1,11)
(2,10), (2,11)
(3,9),(3,10),(3,11)
(4,8),(4,9),(4,10),(4,11)
(5,7),(5,8),(5,9),(5,10),(5,11)
(6, 6), (6,7), (6, 8), (6,9), (6, 10),(6,11)
(7, 7), (7, 8), (7, 9), (7, 10),(7,11)
(8, 8), (8, 9), (8,10),(8,11)
(9, 9), (9,10),(9,11)
(10, 10),(10,11)
(11,11)
36组


x≤y 的设定是为了避免你重复计算 (6,7) (7,6)
36组里面,等边的为6组,不等边为30组.


你的45组,我猜.
你没计算到边长 11 的11组.因此只得25组!
25组里面有5组是等边,20组为非等边.加上非等边组重复计算 5 + 20 x 2 = 45组.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.