当前位置: > 设f(x)=(m-2)x²-3mx+1(x∈R)为偶函数,那么它的单调增加区间为?...
题目
设f(x)=(m-2)x²-3mx+1(x∈R)为偶函数,那么它的单调增加区间为?

提问时间:2021-01-11

答案
答:
f(x)=(m-2)x²-3mx+1是偶函数,则:f(-x)=f(x)
所以:
f(-x)=(m-2)x²+3mx+1=f(x)
所以:
(m-2)x²+3mx+1=(m-2)x²-3mx+1
所以:6mx=0对任意x都成立
所以:m=0
所以:f(x)=-2x²+1
所以:f(x)的单调增区间为(-∞,0]
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.