当前位置: > 已知f(x)=1/2x2+4lnx-5x,f′(x)是f(x)的导数.(Ⅰ)求y=f(x)的极值;(Ⅱ)求f′(x)与f(x)单调性相同的区间....
题目
已知f(x)=
1
2
x2+4lnx-5x
,f′(x)是f(x)的导数.
(Ⅰ)求y=f(x)的极值;
(Ⅱ)求f′(x)与f(x)单调性相同的区间.

提问时间:2021-01-11

答案
(Ⅰ)∵f(x)=
1
2
x2+4lnx-5x
,∴f′(x)=x+
4
x
-5=
(x-1)(x-4)
x
(x>0),
由f'(x)>0得,0<x<1或x>4,由f'(x)<0得,1<x<4.当x变化时,f'(x)、f(x)变化情况如下表:
⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙
x(0,1)1(1,4)4(4,+∞)
f'(x)+0-0+
f(x)极大值极小值
∴f(x)的极大值f(x)极大=f(1)=-
9
2
,f(x)的极小值f(x)极小=f(4)=8ln2-12.…6分
(Ⅱ)设g(x)=x+
4
x
-5(x>0)
,∴g′(x)=
(x+2)(x-2)
x

由g'(x)>0得,x>2,g(x)为增函数,由g'(x)<0得,0<x<2,g(x)为减函数.
再结合(Ⅰ)可知:f'(x)与f(x)的相同减区间为[1,2],相同的增区间是[4,+∞)…12分.
(I)由导数运算法则知,f′(x)=x+
4
x
-5=
(x-1)(x-4)
x
,再利用导数与单调性关系求出极值即可;
(Ⅱ)求出函数f′(x)的导函数,在定义域下令导函数大于0得到函数的递增区间,令导函数小于0得到函数的递减区间.
再结合(I)即可得到f′(x)与f(x)单调性相同的区间.

A:利用导数研究函数的极值 B:利用导数研究函数的单调性

本题主要考查导数与函数单调性的关系,会熟练运用导数解决函数的极值问题.求函数的单调区间,应该先求出函数的导函数,令导函数大于0得到函数的递增区间,令导函数小于0得到函数的递减区间.

举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.