当前位置: > 线性代数中a1,a2,a3三个三维向量可以表示任意一个三维向量,条件是a1,a2,a3线性无关,为什么呢?...
题目
线性代数中a1,a2,a3三个三维向量可以表示任意一个三维向量,条件是a1,a2,a3线性无关,为什么呢?

提问时间:2021-01-11

答案
a1,a2,a3线性无关就是一个成为一个三维线性无关组,任何一个三维向量都可以由三维线性无关组线形表示
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.