当前位置: > f(x)=In(1+x)在x=0处的Taylor展开式为...
题目
f(x)=In(1+x)在x=0处的Taylor展开式为

提问时间:2021-01-11

答案
令 g(x) = ln(1+x),g(0) = 0;
[ln(1+x)] ' = 1 / (1+x),g'(0) = 1;
[ln(1+x)] '' = -1 / (1+x)^2,g''(0) = -1;
[ln(1+x)] ''' = 2 / (1+x)^3,g''(0) = 2!;
一般有:[ln(1+x)] ^(k) = (-1)^(k-1) * (k-1)!/ (1+x)^k,g^(k)(0) = (-1)^(k-1) * (k-1)!;
根据泰勒展开式有:
∴ ln(1+x) = x - x^2 / 2 + x^3 / 3 + ......+ (-1)^(n-1) * x^n / n + .
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.