当前位置: > 如图,设点M是等腰Rt△ABC的直角边AC的中点,AD⊥BM于E,AD交BC于D.求证:∠AMB=∠CMD(请用两种不同的方法证明)...
题目
如图,设点M是等腰Rt△ABC的直角边AC的中点,AD⊥BM于E,AD交BC于D.求证:∠AMB=∠CMD(请用两种不同的方法证明)

提问时间:2021-01-11

答案
证明:法(1)如图,延长AD至F,使得CF⊥AC,
∵AB⊥AC,AD⊥BM,
∴∠ABM=∠DAC,
又∵AB=AC,CF⊥AC,
∴△ABM≌△CAF,
∴∠BMA=∠F,AM=CF,
∵∠BCA=∠BCF=45°,AM=CM=CF,DC=DC,
∴△FCD≌△MCD,
∴∠AMB=∠F=∠CMD;
法(2)AD交BM于E,作∠BAC的平分线交BM于N,

∵AE⊥BM,BA⊥AC,
∴∠ABN=∠CAE,
∵∠BAN=∠C=45°,AB=AC,
∴△BAN≌△ACD.
∴AN=CD,
∵∠NAM=∠C=45°,AM=MC
∴△NAM≌△DCM,
∴∠AMB=∠CMD.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.