题目
已知圆C:(x-1)2+y2=9内有一点P(2,2),过点P作直线l交圆C于A、B两点.
(1)当l经过圆心C时,求直线l的方程; (写一般式)
(2)当直线l的倾斜角为45°时,求弦AB的长.
(1)当l经过圆心C时,求直线l的方程; (写一般式)
(2)当直线l的倾斜角为45°时,求弦AB的长.
提问时间:2021-01-11
答案
(1)圆C:(x-1)2+y2=9的圆心为C(1,0),
因直线过点P、C,所以直线l的斜率为2,
直线l的方程为y=2(x-1),即2x-y-2=0.
(2)当直线l的倾斜角为45°时,斜率为1,
直线l的方程为y-2=x-2,即x-y=0
圆心C到直线l的距离为
因直线过点P、C,所以直线l的斜率为2,
直线l的方程为y=2(x-1),即2x-y-2=0.
(2)当直线l的倾斜角为45°时,斜率为1,
直线l的方程为y-2=x-2,即x-y=0
圆心C到直线l的距离为
1 | |
|