当前位置: > 如果可逆矩阵A的每行元素之和均为a,证明A^-1的每行元素之和为a^-1....
题目
如果可逆矩阵A的每行元素之和均为a,证明A^-1的每行元素之和为a^-1.

提问时间:2021-01-11

答案
A*(1,1,...,1)'=(a,a,...,a)'
两边左乘A^-1
(1,1,...,1)'=A^(-1)*(a,a,...,a)'
两边除以数量a
(1/a,1/a,...1/a)=A^(-1)*(1,1,...,1)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.