当前位置: > 如图,边长为3的正方形ABCD绕点C按顺时针方向旋转30°后得到正方形EFCG,EF交AD于点H,则四边形DHFC的面积为(  ) A.3 B.33 C.9 D.63...
题目
如图,边长为3的正方形ABCD绕点C按顺时针方向旋转30°后得到正方形EFCG,EF交AD于点H,则四边形DHFC的面积为(  )
A.
3

B. 3
3

C. 9
D. 6
3

提问时间:2021-01-11

答案
连结CH,如图,
∵正方形ABCD绕点C按顺时针方向旋转30°后得到正方形EFCG,
∴∠BCF=30°,
∴∠FCD=60°,
∵在Rt△CFH和Rt△CDH中
CH=CH
CF=CD

∴Rt△CFH≌Rt△CDH(HL),
∴∠FCH=∠DCH,
∴∠FCH=30°,
在Rt△CFH中,CF=3,∠FCH=30°,
∴HF=
FC
3
=
3

∴S△FCH=
1
2
×3×
3
=
3
3
2

∴四边形DHFC的面积=2S△FCH=3
3

故选B.
连结CH,根据旋转的性质得∠BCF=30°,则∠FCD=60°,根据“HL”可判断Rt△CFH≌Rt△CDH,则∠FCH=∠DCH=30°,在Rt△CFH中,根据含30度的直角三角形三边的关系得到HF=
FC
3
=
3
,然后根据三角形面积公式计算出S△FCH=
3
3
2
,最后利用四边形DHFC的面积=2S△FCH即可.

旋转的性质;正方形的性质.

本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了正方形的性质.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.