题目
线段AB过x轴正半轴上一定点M(M,0),端点A,B到X轴的距离之积为2m,以X轴为对称轴,过A,O,B三点做抛物线,
求此抛物线的方程
设抛物线方程为 y^2=2px,直线AB方程为 y=k(x-m),代入抛物线方程得
ky^2=2p(y+km),
即 ky^2-2py-2pkm=0,
设A(x1,y1),B(x2,y2),则由y1、y2异号得
|y1|*|y2|=-y1*y2=2pkm/k=2m,是怎么来的?
2p=2,
因此,抛物线方程为 y^2=2x.
y1|*|y2|=-y1*y2=2pkm/k=2m,是怎么来的?
求此抛物线的方程
设抛物线方程为 y^2=2px,直线AB方程为 y=k(x-m),代入抛物线方程得
ky^2=2p(y+km),
即 ky^2-2py-2pkm=0,
设A(x1,y1),B(x2,y2),则由y1、y2异号得
|y1|*|y2|=-y1*y2=2pkm/k=2m,是怎么来的?
2p=2,
因此,抛物线方程为 y^2=2x.
y1|*|y2|=-y1*y2=2pkm/k=2m,是怎么来的?
提问时间:2021-01-11
答案
由y1、y2异号(即y1、y2一正一负)可得:|y1|*|y2| = -y1*y2 ;
y1、y2是方程 ky^2-2py-2pkm = 0 的两根,由韦达定理可得:y1y2 = -2pkm/k ;
所以,|y1|*|y2| = -y1*y2 = 2pkm/k = 2pm .【原解答中"2m”应改为"2pm",估计只是笔误】
y1、y2是方程 ky^2-2py-2pkm = 0 的两根,由韦达定理可得:y1y2 = -2pkm/k ;
所以,|y1|*|y2| = -y1*y2 = 2pkm/k = 2pm .【原解答中"2m”应改为"2pm",估计只是笔误】
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1关于有理数混合运算较难的题目(要有解答)急!
- 2戊戌变法为什么又称百日维新
- 3谁是最可爱的人作者为啥怎么说
- 4He was well thought of by all the people around his.
- 5求英语辩论赛 主持人的串词!
- 6商鞅变法中对后世影响最为深远的是承认土地私有还是建立县制?
- 7观察 分析下列数表中各行、各列数字排列的规律 “?”是多少
- 83 1 1 297 101 99 5 -3 2 行列式计算,
- 9已知圆C1:x^2+y^2=4和圆C2:x^2+y^2+4x-4y=0关于直线l对称,求直线l的方程)的圆C的切线方程
- 10六年级共有4个班级,一班与二班共有82人,二班与三班共有84人,三班与四班共有86人,四班与一班共有()A:82人 B:84人 C:86人 D:88人
热门考点
- 1My grandpa never eats out.改成同义句
- 2蒸汽火车沿平直轨道行驶,风向自东向西,路边的观察者看到从火车烟囱中冒出的烟雾是竖直向上呈柱形,由此可知,相对于空气,火车的运动方向是( ) A.自东向西 B.自西向东 C.静止
- 3已知关于x的方程为2kx2-2x-3k-2=0的两个实数根一个小于1,另一个大于1,则实数k的取值范围是( ) A.k>0 B.k<-4 C.-4<k<0 D.k<-4或k>0
- 4关于老子中的一句话的解释
- 5有一堆水果分给若干个孩子,如果每人分三个,就剩下八个;如果每个人分五个最后一个孩子分不到三个求孩子人
- 6中文翻译成英文 经历了一些困难后,我发现有好朋友是多么重要
- 7hello.my friend!What can I do for you?什么义
- 8解方程组(2x-5)/(x-2)+(2y-3)/(y-1)=2
- 9什么是均值——方差分析?
- 10怎么解二元一次方?