当前位置: > 给定正整数n和实数M,对于满足条件:(a1)^2+[a(n+1)]^2≤M^2的所有等差数列:a1,a2,a3….,试求S=a(n+1)+a(n+2)+……+a(2n+1) 的最大值....
题目
给定正整数n和实数M,对于满足条件:(a1)^2+[a(n+1)]^2≤M^2的所有等差数列:a1,a2,a3….,试求S=a(n+1)+a(n+2)+……+a(2n+1) 的最大值.

提问时间:2021-01-11

答案
解法一 由Cauchy不等式求解
S=a(n+1)+a(n+2)+……+a(2n+1)
=(n+1)*[a(n+1)+a(2n+1)]/2
=(n+1)*[3a(n+1)-a1]/2
=
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.