当前位置: > 高等数学导数不等式证明...
题目
高等数学导数不等式证明
设常数a>In2-1,证明:当x>0时,e^x>x^2-2ax+1
证明:设f(x)=e^x-(x^2-2ax+1),则f'(x)=e^x-2x+2a,f''(x)=e^x-2.令f''(x)=0,得x=In2.
当x0.
所以f'(x)在x=In2处取到最小值,因此f'(x)>=f'(In2)=2-2In2+2a>0.于是f(x)为单调增加函数.
故当x>0时,有f(x)>f(0)=0,即e^x>x^2-2ax+1
这到题我不明白为什么当x0.
,所以f'(x)在x=In2处取到最小值这步为什么取当x>In2时,f''(x)>0.f'(x)在x=In2处取到最小值为什么不是取x

提问时间:2021-01-10

答案
当x
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.