当前位置: > 证明,如果一个直角三角形边长分别为a=m平方=n平方,b=2mn,c=m平方+n平方.(m>n),则这个三角形是直角三角形....
题目
证明,如果一个直角三角形边长分别为a=m平方=n平方,b=2mn,c=m平方+n平方.(m>n),则这个三角形是直角三角形.

提问时间:2021-01-10

答案
“a=m平方=n平方”应该是:“a=m^2-n^2”吧?
证明:
因为
a^2+b^2
=(m^2-n^2)^2+(2mn)^2
=m^4-2m^2n^2+n^4+4m^2n^2
=m^4+2m^2n^2+n^4
=(m^2+n^2)^2
=c^2
所以根据勾股定理的逆定理知这个三角形是直角三角形
供参考!JSWYC
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.