当前位置: > 设A是n(n>3)阶方阵,且R(A)=n-2,*A是A的伴随矩阵,则必有RA*=0...
题目
设A是n(n>3)阶方阵,且R(A)=n-2,*A是A的伴随矩阵,则必有RA*=0

提问时间:2021-01-10

答案
首先要知道的是,如果矩阵的秩r(A)=r,那么A的所有r+1阶子式都等于0.本题中r(A)=n-2,所以A的所有n-1阶子式都等于0,而A*中的所有元素不过就是A的n-1阶子式再配上一个正负号而已,因此A*的所有元素都等于0,即A*=O(0矩阵),自然有r(A*)=0.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.