当前位置: > 已知ab≠0,求证:a+b=1的充要条件是a3+b3+ab-a2-b2=0....
题目
已知ab≠0,求证:a+b=1的充要条件是a3+b3+ab-a2-b2=0.

提问时间:2021-01-10

答案
证明:先证必要性:
∵a+b=1,∴b=1-a
∴a3+b3+ab-a2-b2=a3+(1-a)3+a(1-a)-a2-(1-a)2
=a3+1-3a+3a2-a3+a-a2-a2-1+2a-a2
=0
再证充分性:
∵a3+b3+ab-a2-b2=0
∴(a+b)(a2-ab+b2)-(a2-ab+b2)=0
即:(a2-ab+b2)(a+b-1)=0
∵ab≠0,a2-ab+b2=(a-
1
2
b)2+
3
4
b2>0

∴a+b-1=0,即a+b=1
综上所述:a+b=1的充要条件是a3+b3+ab-a2-b2=0
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.