当前位置: > 设f(x)=x^2+bx+c,方程f(x)=kx(k为常数,k>0)的两个实数根为m、n.求证:当n-k...
题目
设f(x)=x^2+bx+c,方程f(x)=kx(k为常数,k>0)的两个实数根为m、n.求证:当n-k

提问时间:2021-01-10

答案
4月25日 21:17 因为ax^2+bx+c=0 (a≠0)
所以两边同乘以4a得:(2ax)^2+4abx+4ac=0
化为:(2ax)^2+4abx+b^2=b^2-4ac
即(2ax+b)^2=b^2-4ac
设△=b^2-4ac ,则有 (2ax+b)^2=△
当△≥0 时,两边开方得:2ax+b=±√△
因为a≠0 ,所以x=(-b±√△)/(2a)
△<0时,由负数没有平方根
所以方程没有实数根.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.