当前位置: > 求拉氏变换微分定理的证明全过程...
题目
求拉氏变换微分定理的证明全过程

提问时间:2021-01-10

答案
拉普拉斯变换:若f(t)的拉普拉斯变换为F(s),则L{f '(t)}=sF(s)-f(0)
证明:
左边=L{f '(t)}
=∫[0→+∞] f '(t)e^(-st) dt 下面分部积分
=∫[0→+∞] e^(-st) d(f(t))
=f(t)e^(-st)|[0→+∞] + s∫[0→+∞] f(t)e^(-st) dt
=-f(0)+sF(s)
=右边
如果解决了问题,请采纳.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.