题目
求三次方程的通解和韦达定理
提问时间:2021-01-10
答案
三次方程的通
韦达定理(Vieta's Theorem)的内容
一元二次方程ax^2+bx+c=0 (a≠0 且△=b^2-4ac≥0)中
设两个根为X1和X2
则X1+X2= -b/a
X1*X2=c/a
广义韦达定理
韦达定理在更高次方程中也是可以使用的.一般的,对一个一元n次方程∑AiX^i=0
它的根记作X1,X2…,Xn
我们有
∑Xi=(-1)^1*A(n-1)/A(n)
∑XiXj=(-1)^2*A(n-2)/A(n)
…
∏Xi=(-1)^n*A(0)/A(n)
其中∑是求和,∏是求积.
如果一元二次方程
在复数集中的根是,那么
法国数学家韦达最早发现代数方程的根与系数之间有这种关系,因此,人们把这个关系称为韦达定理.历史是有趣的,韦达的16世纪就得出这个定理,证明这个定理要依靠代数基本定理,而代数基本定理却是在1799年才由高斯作出第一个实质性的论性.
由代数基本定理可推得:任何一元 n 次方程
在复数集中必有根.因此,该方程的左端可以在复数范围内分解成一次因式的乘积:
其中是该方程的个根.两端比较系数即得韦达定理.
韦达定理在方程论中有着广泛的应用.
韦达定理(Vieta's Theorem)的内容
一元二次方程ax^2+bx+c=0 (a≠0 且△=b^2-4ac≥0)中
设两个根为X1和X2
则X1+X2= -b/a
X1*X2=c/a
广义韦达定理
韦达定理在更高次方程中也是可以使用的.一般的,对一个一元n次方程∑AiX^i=0
它的根记作X1,X2…,Xn
我们有
∑Xi=(-1)^1*A(n-1)/A(n)
∑XiXj=(-1)^2*A(n-2)/A(n)
…
∏Xi=(-1)^n*A(0)/A(n)
其中∑是求和,∏是求积.
如果一元二次方程
在复数集中的根是,那么
法国数学家韦达最早发现代数方程的根与系数之间有这种关系,因此,人们把这个关系称为韦达定理.历史是有趣的,韦达的16世纪就得出这个定理,证明这个定理要依靠代数基本定理,而代数基本定理却是在1799年才由高斯作出第一个实质性的论性.
由代数基本定理可推得:任何一元 n 次方程
在复数集中必有根.因此,该方程的左端可以在复数范围内分解成一次因式的乘积:
其中是该方程的个根.两端比较系数即得韦达定理.
韦达定理在方程论中有着广泛的应用.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点
- 11.have 2.go 3.do 4.clean 5.wash A.home B.a headache C.homework D.the dishes E.the blackboard
- 2已知椭圆c:x^2/a^2+Y^2/b^2=1(a>b>0)的离心率为1/2,其右焦点也是抛物线y^2=4x的焦点……
- 3有一堆围棋子,白子颗数是黑子的3倍,每次拿出7颗白子、4颗黑子,经过若干次(不到十次)后,剩下的白子是黑子的11倍.原来白子有_颗.
- 4生物大分子物质有哪些?
- 5这些鞋子多少钱?()()()()the shoes?
- 6量取10mL液体试剂时,如果没有10mL容量的量筒,最好选用的量筒是A.5mL B.20mL C.50mL D.100mL
- 7_____your grandmother often ______(listen)to music of that kind
- 8●Mother asked,"Is either you or Lily going to do the cleaning after supper?"
- 9在木炭燃烧反应中的最小粒子是( ),在硫和氧气的反应中,发生变化的是
- 10将there we busy very days are 连词成句