当前位置: > 已知数列{an}的前n项和为Sn,Sn=2n^2-3n+6,则函数的通项公式an=...
题目
已知数列{an}的前n项和为Sn,Sn=2n^2-3n+6,则函数的通项公式an=

提问时间:2021-01-10

答案
an = Sn-S(n-1)
= 2n^2-3n+6-[2(n-1)^2-3(n-1)+6]
= 2n^2-3n+6-[2n^2-4n+2-3n-3+6]
= 4n+1
当n=1时
s1=a1=5
所以数列通项公式为:
4n+1
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.