当前位置: > 用泰勒公式证明不等式...
题目
用泰勒公式证明不等式
设f(x)在[0,1]二阶可导,且f(0)=f'(0)=f'(1)=0,f(1)=1
求证:存在ξ∈(0,1),使|f''(ξ)|≥4

提问时间:2021-01-09

答案
∵f(1/2)=f(0)+f'(0)/2+f''(θ)/8=f(1)-f'(1)/2+f''(φ)/8
∴|f''(θ)-f''(φ)|=8
∵|f''(θ)-f''(φ)|≤|f''(θ)|+|f''(φ)|≤2max|f''(x)|
∴max|f''(x)|≥4
∴存在ξ∈(0,1),使|f''(ξ)|≥4
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.