当前位置: > 微积分:设f(x y)=【(xy)^2】/【(x^2+y^2)^3/2 】证明:f(x y)在点(0 0)处连续且偏导数存在 但不可微....
题目
微积分:设f(x y)=【(xy)^2】/【(x^2+y^2)^3/2 】证明:f(x y)在点(0 0)处连续且偏导数存在 但不可微.

提问时间:2021-01-09

答案
按题目的要求还是要补充原点的定义,f(0,0)=0
化为极坐标
f=(r^4* (sin(2θ)/2)^2)/ r^3=1/4 *r (sin(2θ))^2
观察函数图像,结合定义,是不难证明函数的连续性(|f(x)|
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.