当前位置: > 定义在R上的函数f(x),对任意的x、y∈R,有f(x+y)+f(x-y)=2f(x)f(y),且f(0)不等于1,求证f(x)为奇函数...
题目
定义在R上的函数f(x),对任意的x、y∈R,有f(x+y)+f(x-y)=2f(x)f(y),且f(0)不等于1,求证f(x)为奇函数
设F(x)=f(tanx),求证方程F(x)=0至少有一个实根;若方程F(x)=0在(-π/2,π/2)上有n个实根,则n必为奇数

提问时间:2021-01-09

答案
令y=0
f(x)+f(x)=2f(x)f(0)
所以f(x)=f(x)f(0)
f(x)[f(0)-1]=0
f(0)≠1
所以只有f(x)=0
所以f(-x)=0=-f(x)
定义域R关于原点对称
所以是奇函数
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.