当前位置: > 在任意四边形ABCD中,求证:AB*CD+AD*BC>=AC*BD,并指出取等号条件....
题目
在任意四边形ABCD中,求证:AB*CD+AD*BC>=AC*BD,并指出取等号条件.

提问时间:2021-01-09

答案
这是托勒密定理推广式.
证明:在四边形ABCD中取点E,使角BAE=角CAD 角ABE=角ACD
则三角形ABE相似于三角形ACD
所以AB/AC=BE/CD=AE/AD
AB*CD=AC*BE
又因为AB/AC=AE/AD且角BAC=角EAD
推出三角形ABC相似于三角形AED
AD*BC=AC*ED
所以AB*CD+AD*BC=AC*(BE+ED)>=AC*BD
当且仅当BED共线时等号成立,即ABCD四点共圆时等号成立.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.